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1. Introduction 
 
During the second half of the twentieth century the 
theory of duality has represented a major line of 
progress for the microeconomics of production and 
consumption. By the seventies, the equivalence of 
primal and dual representations of problems was 
undisputed as a firm ground upon which to build 
microeconomic analysis. As well undisputed is the 
benchmark nature of homothetic models, as 
witnessed by the role of such models in 
authoritative expositions of duality theory (for 
instance, Diewert, 1982; Chambers, 1988; Cornes, 
1992). Still, the differential aspects of scale 
symmetry may be underexploited as yet, and tailor 
lines of progress for the theory of duality. In fact, it 
is the aim of the present contribution to set forth a 
differential geometric approach to preference 
symmetries, fundamental identities and 
conjugation, in connection with the benchmark 
properties of homothetic models, and thereby argue 
about the effectiveness of such an approach. For the 
sake of definiteness, we shall focus the problem of 
the consumer, taking for granted the isomorphism 
with the problem of the single output producer. 
     The vision underlying the present contribution 
posits that the well behavior of expansion paths on 
primal space can be consistently represented by the 
existence of an expansion vector field, whose 
integral curves provide global parametrizations of 
income (wealth) effects (“INE” henceforth). Such an 
expansion vector field is not a ‘novelty’; for instance, 
a close correspondent is employed by Smale (1982, 
p. 343) in the global analysis of equilibrium. A 
novelty may be represented by the recognition of 
the effectiveness of such a vector field in the 
investigation of issues which lie beyond the reach of 
comparative statics. 
   The structure of duality theory is typically 
recognized as the network of ‘links’ between primal 
and dual representations of the fundamental 
properties of a system, for which Blackorby et al. 
(1978, Appendix) set forth a landmark analysis. 
Standard approaches seem to posit that duality 
theory is meant to focus the model-dependent 
objects of the theory (preferences, expenditure 
functions, distance functions, etc.). Definitely, a 
proper introduction of the expansion vector field 
forces us to ‘strengthen’ the model-independent 
structure of the theory on differential geometric 
grounds, and identify three levels of duality. 
   A first level, call it pairing duality, pertains to the 
very nature of dual variables. There exists a bilinear 
symmetric operation which takes a pair of dual 
variables and yields a real number. In such respects, 
prices and quantities are dual in quite the same 
sense that the elements of dual linear spaces are 
dual (with the caveat that our economic dual spaces 
do not coincide with their linear hull). 

   A second level of the theory may be called scale 
duality and pertains to the actions on the constraint 
structure of the group of homotheties on both dual 
spaces. Recall, expenditure minimization at fixed 
prices is easily envisioned in terms of expanding (or 
shrinking) budget constraints up to identifying the 
least expenditure that guarantees the reference 
utility level. The duality of the model-independent 
scale transformations of the constraint structure 
guarantees the equivalence of utility maximization 
and expenditure minimization problems, which lies 
at the foundations of duality theory (for instance, 
Mas-Colell et al., 1995). 
   A third model-dependent level of the theory, call it 
demand duality, deals with specific properties of 
preferences and demand. We shall assume that 
Marshallian demand defines a smooth bijection 
between dual spaces, and then consider the induced 
mappings on vector fields (scaling and expansion 
vector fields) and 1-forms (representing demand). 
The notions of pull-back and push-forward 
(Abraham and Marsden, 1987) are the natural 
instruments by means of which to implement the 
perfect symmetry between the dual formulations of 
producers’ and consumers’ problems. 
   Differential geometric methods have long entered 
microeconomic analysis (see for instance Debreu, 
1976). Recently, Tyson (2013) employs vector fields 
on primal space in order to characterize symmetries 
of preferences in terms of PDEs for direct utility 
functions. Our framework is well suited to embed 
such an approach to continuous symmetries, and 
we shall fix the simple connection between the 
expansion vector field and a symmetry vector field 
(section 5), if any. In fact, our approach does fit 
more general settings in which the vanishing of the 
Lie derivative with respect to Y of a tensor field t is 
the condition for t to be constant along the flow of 
the vector field Y (Abraham and Marsden, 1987, 
chapter 2). Then, the ‘reciprocity’ condition for a 
pair of vector fields to be constant along each 
other’s flows can be expressed in terms of their Lie 
bracket. The vector fields, and the associated flows, 
are then said to commute. Along such lines, Mantovi 
(2013) establishes that suitably parametrized 
expansion and substitution effects do commute for 
homothetic problems, and thereby deepens the link 
between standard and reversed decompositions of 
overall (Farrell) efficiency as tailored by Bogetoft et 
al. (2006). 
   The plan of the rest of the paper is as follows. In 
sections 2 and 3 we address pairing duality and 
scale duality respectively. In section 4 we introduce 
the expansion vector field. The connection with 
preference symmetries is established in section 5. 
The fundamental identities of demand are discussed 
in section 6, together with conjugation. In section 7 
we address the benchmark nature of homothetic 
models in terms of the commutation of INE and 
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scale effects. A final section is meant to tailor 
potential lines of progress. 
   We refer to Abraham and Marsden (1987) and 
Spivak (1999) for the geometric notions we shall be 
dealing with (manifolds, diffeomorphisms, vector 
fields, flows, Lie brackets, 1-forms). Admittedly, the 
following discussion makes no justice of the 
relevance of duality in the development of 
microeconomic theory, the aim of the paper being 
essentially methodological. In such respects, we 
shall try and avoid employing economic insights in 
the derivation of results, with the aim of sharpening 
the structure of the theory. For instance, convexity 
shall not enter explicitly the following discussion, 
being subsumed in the well behavior of preferences. 
We shall write “d-h” for the property of a function of 
being homogeneous of degree d in definite 
variables. 
 
 
2. Pairing duality 
 
Our geometric setup is as follows. Let the primal 

manifold B be defined by the strictly positive 

orthant1 (0,)…(0,)  R
n
 endowed with the 

natural C (smooth) differentiable structure; let B 

represent the consumption set of our price-taking 
consumer. The natural coordinates q of the global 

chart (0,)…(0,) of B represent a preferred 

coordinate system: despite the infinite coordinate 

systems accommodated by the maximal atlas of B, 

economic arguments are meant to deal with 
quantities of well defined infinitely divisible goods, 
which the coordinates q are meant to represent. 
   Prices P and income (wealth) I are the exogenous 
variables of our problems. The space  of such 
variables is (n+1)-dimensional, and Marshallian 

demand is a correspondence   B. In fact, 

Marshallian demand is 0-h on , and we are in a 
position to break such a symmetry and thereby 
define Marshallian demand as a correspondence 

from a dual n-dimensional space to B. As is well 

known, one can for instance elect a commodity as 
numeraire, and thereby define relative prices. 
Definitely, we shall break 0-h via normalized prices, 
i.e. prices-to-income (for instance, Cornes, 1992). 

Thus, let A represent the space of positive 

normalized prices (rule out free goods), and let 

Marshallian demand be a correspondence A  B. 

Write  :   A  for the projection (P, I) = P/I  p. 

   If we consider B as a subset of a n-dimensional 

real linear space  (true, consumption bundles can 
be summed and scaled up as long as the result 

belongs to B), we can define the dual manifold A as 

                                                 
1 We do not consider the boundary of the orthant, in that 
we do not want nonnegativity constraints to be binding. 
Compare Cornes (1992, p. 35). 

the strictly positive orthant of the dual * endowed 
with the natural differentiable structure, and 
thereby inherit the pairing pq between elements of 

the dual linear spaces. Thus, elements of A define 

linear forms on B and viceversa, in close 

correspondence with the natural isomorphism 
between a finite dimensional linear space and the 
dual to its dual (see for instance Spivak, 1999, p. 
108). This is a first level of pairing duality, whose 
matrix representation reads 
                                                                 

 

















 n

n

k

k

q

q

ppqp

n

k



1

1

1

  pq                            (2.1)                                                 

     
Gorman (1976, p. 238) points out the relevance of 
the symmetry of such a pairing. 

   Elements of A represent the normalized prices of 

our consumption goods, and therefore any change 

in the coordinates on B calls for a suitable change of 

the coordinates on A such that the pairing pq is 

well defined, i.e. invariant with respect to such 
transformations2. 
   The condition 1 = pq enables us to define the 
constraint structure on our dual spaces. On the one 

hand, given qB, such a condition defines the locus 

(simplex) (q)  {pA : 1 = pq} of normalized 

prices for which q entails unit normalized 

expenditure. On the other hand, given pA, the 

locus (p)  {qB : 1 = pq} (a simplex) represents 
the boundary of the budget constraint, i.e. the set of 
bundles which can be bought at the prevailing 
prices assuming all income is spent. Such 

constraints define infinite foliations of A and B that 

can be parametrized by expansion. 

   Definitely, not only A and B are dual, they are 

diffeomorphic. Recall, a Ck diffeomorphism is a Ck 
bijection between manifolds (then necessarily of the 
same dimension). It is not difficult to convince 
oneself of the existence of a smooth diffeomorphism 

between A and B by employing the natural global 

charts. We are thus in a position to address the 

duality mapping B  A (given by inverse 

Marshallian demand) in terms of the powerful 
toolkit of manifolds and mappings, for which we 
recall the following basic notions. 

   A diffeomorphism  : A  B enables one to push-

forward any smooth tensor field on A and thereby 

define a smooth tensor field of the same type on B. 

The simplest case is the push-forward of a function 

(a tensor filed of type 0-0) g : A  R, which is 

defined as   g : B  R,   g (b)  g ( –1(a)), for any 

                                                 
2 Such coordinate changes may represent ‘combined’ 
goods and prices, for instance, characteristics and hedonic 
prices. Recall, in general, elements (points) of a manifold 
do not admit linear forms defined on them intrinsically. 
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b =  –1(a)  B. Corresponding definitions apply to 

tensor fields of arbitrary type (a significant example 

of tensor field of rank 2 on A is given by the matrix 

of substitution effects). 

   A smooth surjective function f : A  B enables 

one to pull-back any smooth tensor field on B and 

thereby define a smooth tensor field of the same 

type on A . The simplest case is the pull-back of a 

function  h : B  R defined as  f 
*h : A  R ,  f 

*h (a) 

 h (f (a))  for any b = f (a) B. Corresponding 

definitions apply to tensor fields of arbitrary type. 
Evidently, being f a diffeomorphism, the pull-back f 

* 
is the inverse of the push-forward f –1

. One can 
define an indirect utility function as the pull-back of 
a direct utility function via Marshallian demand, 
provided the following assumption holds. 
  
Assumption 2.1. Let preferences be smooth and 
satisfy nonsatiation (strong monotonicity) and 
strictly convexity (compare Cornes, 1992, chapter 2) 

so that Marshallian demand  : A  B is a 

diffeomorphism. 
 
Assumption 2.1 is meant to represent well behavior 
as smoothness and uniqueness of optimal 
consumption, and rule out for instance 
nonconvexities. It is satisfied for instance by CES 
(and then Cobb-Douglas) preferences. By 
Assumption 2.1 we are guaranteed the possibility to 
pull-back a direct utility function and define an 
indirect utility function, as well as push-forward an 
indirect utility function and obtain direct utility, and 
then map dual indifference sets one onto another. 
Then, being Marshallian demand a diffeomorphism, 
we are guaranteed that expansion paths do foliate 

B smoothly, thereby paving the way to the 

representation of expansion paths and INE in terms 
of the flow of a smooth vector field (Proposition 4.1 
below). 
   The fundamental role of diffeomorphisms in 
differential geometry has been long established: 
diffeomorphic manifolds are in a sense the same 
manifold, in that any class of geometric objects on 
one manifold can be pushed forward on the other 
manifold and retain the same properties (see for 
instance Abraham and Marsden, 1987, Proposition 
1.7.17). Definitely, normalized prices enable us to 
break 0-h of Marshallian demand and obtain dual 

diffeomorphic manifolds A and B upon which 

scaling vector fields have the same analytic form, 
and thereby get the chance to exploit the full power 
of diffeomorphic descriptions. 
   Recall some notation. A vector field on the 

manifold M of dimension n is a section of the 

tangent bundle TM . Within each chart, the 

coordinate vector fields 
kx


 (k = 1, ... , n) define a 

basis of each tangent space to M , so that a vector 

field Y on M  can be written 

 









n

k
k

k

x
xYx

1

)(  )(Y                                              (2.2) 

 
and its push-forward  Y as 
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           (2.3) 

 

   A 1-form on M is a section of the cotangent 

bundle T M . Within each chart, the coordinate 1-

forms dx j (j = 1, ... , n) define a basis of each 

cotangent space to M , so that a 1-form  on M can 

be written 
 






n

j

j
j dxxx

1

)( )(
                                      (2.4) 

 
   Coordinate vector fields and 1-forms are dual, in 
that, by definition, 
                                                                      

j
kk

j

x
dx 














                                                              (2.5) 

 

being
j

k (=1 for k = j, 0 else) the components of the 

Kronecker tensor. Then, the pairing between a 1-
form and a vector field results in a scalar function 
whose coordinate representation, on account of 
(2.5), reads 
 






n

j

j
j xYxx

1

)()())((   Y                               (2.6) 

 
   On algebraic grounds, (2.5) represents the 
standard duality between elements of dual bases; 
on geometric grounds, (2.5) represents a differential 
level of duality. The economic interpretation of (2.1) 
is that the cost of a consumption bundle is the linear 
combination of prices and quantities, each price 
contributing only to the cost of consuming one 
good. The differential consequence of such an 
interpretation is represented by (2.5): an 
infinitesimal variation of the normalized price pj 
affects only the normalized cost of varying 
consumption of good j. We thereby envision two 
levels of pairing duality, a base level represented by 
(2.1), and a tangent level represented by (2.5). Such 
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a distinction enables a better appreciation of the 
following results, whose consistency rests on 
 

Property 2.2. The global coordinates p on A induce 

natural coordinates on each tangent space to A. 

Correspondingly, the global coordinates q on B 

induce natural coordinates on each tangent space to 

B. 

 
Proof. Beginners in differential geometry soon 
become acquainted with such a property for finite 
dimensional linear spaces (for instance Spivak, 
1999, chapter 3). In fact, our finite dimensional dual 

spaces A and B are not linear spaces, since they do 

not coincide with their linear hull. Still, it is not 
difficult to adapt standard arguments in order to 
convince oneself that Property 2.2 holds on our dual 

spaces, since, given any qB, the points q + t v 

belong to B for any vB for small enough | t |, and 

correspondingly for A . 

 
   Property 2.2 sets the status of the tangent level of 
duality (see Remark 3.2 below). 
 
 
3. Scale duality 
 
It is well known that the action of the group of 
homotheties (scale transformations) of Rn can be 
realized as a flow, by means of which we can 
strengthen the absolute level of duality theory. In 

fact, rays on A have been effectively employed in 

the representation of INE (Cornes, 1992, chapter 3). 
   Recall, the role of scale transformations in shaping 
the inquiry about index numbers, and in fact in 
shaping the structure itself of microeconomics, has 
long been recognized (for instance, Malmquist, 
1953; Shephard, 1953). We shall employ scale 
transformations in order to parametrize INE in ratio 
form, thereby departing from the standard linear 
parametrization employed in Slutsky equations, and 
aligning with the philosophy embodied by the 
distance function. 
   Definitely, the integral curves of the vector field 
 









n

j j
j

p
p

1

                                                              (3.1) 

 

on A do span all of the rays of A , as confirmed by 

the solutions (with j = 1,..., n, –  s  +), for any 
initial condition p(0), 
 

s
jj epsp  )0()(                                                             (3.2) 

 
to the initial value problems defined by the first 

order ODE system 
ds

d
; write p(s) =

se p(0) as 

a compact notation for the n maps (3.2). Notice that 
the dynamics (3.2) is decoupled, i.e. each price 
evolves independently of the others. 
   The flow generated by the curves (3.2) provides a 

consistent definition of INE: given any pA , the 

point e–sp uniquely identifies the INE in which 
prices are scaled by the factor e–s at fixed income, or, 
equivalently, income is scaled by the factor es at 
fixed prices. The exponential notation is well 
adapted to the composition of effects, and one can 
write e–s(e–t p) = e–(s+t) p for the composition law for 
the flow of a vector field (Abraham and Marsden, 
1987, section 2.1). A plot of sample rays (3.2) is 
given in Figure 1 (red lines).    
 

 

          
Figure 1. Sample integral curves of   (red rays) and 
isoexpenditure constraints.   

 
 
  
  Turn to the action of the group of homotheties on 

B. Scale transformation on consumption set can be 

generated by the vector field (compare Mantovi, 
2013; Tyson, 2013) 
 









n

k
k

k

q
q

1

  Z                                                          (3.3) 

 
Integral curves of (3.3) read (j = 1, ... , n, –  s  
+), for any initial condition q(0), 
 

seqsq kk  )0()(                                                             (3.4) 

 

and one can write q(s) =
Zse q(0). Once computed 

on a scalar function  : B  R, the vector field (3.3) 

enables us to define the elasticity of scale of  as the 
ratio Z()/. Then, for a d-h function f(q), Z(f) = d f 
(Euler’s formula)3, and correspondingly for d-h 

functions on A with respect to . The structural 

                                                 
3 Evidently, for any nonvanishing number b, bZ generates 

as well the group of homotheties of B; still, it takes Z to 

represent Euler’s formula as  Z(f) = d f . 
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dual role of the flows (3.2) and (3.4) is established 
by 
 
Proposition 3.1. The flow of   is adapted to the 

constraint structure on A according to 

                                                                              

)()( qq 
ss ee  

                                                    (3.5) 

 

for any qB and sR. Correspondingly, for any pA 

and sR, the flow of Z is adapted to the constraint 

structure on B according to 
                                                                            

)()( pp 
Z ss ee                                                        (3.6) 

 

Proof. Check the proposition by means of the 
explicit formulas (3.2) and (3.4) for the integral 
curves of the vector fields  and Z. 
 
    and Z are scale dual in the sense of (3.5) and 
(3.6): the LHSs of (3.5) and (3.6) represent the 

action of scale transformations on constraints on A 
and B respectively, whereas the RHSs represent the 

action of scale transformations on the respective 
dual space.  
   Admittedly, Proposition 3.1, which does not 
represent an original result, fixes the explicit 
representation of the role of scale transformations 
as acting on the constraint structure of the theory, 
and therefore of the mechanism underlying the 
equivalence between utility maximization and 
expenditure minimization (whose foundational 
status is thoroughly discussed by Mas-Colell et al., 
1995). Recall, such an equivalence is at the basis of 
Shephard duality: in a sense, all of duality results 
stem from the mechanism represented in 
Proposition 3.1. Figure 1 pictures a number of 
sample unit-expenditure constraints and integral 
curves of  as representation of the process of 

dragging along simplexes on A for n = 2. 

   Given the foundational role of Proposition 3.1, 
still, the simplicity of its proof may lead one not to 
focus properly the geometrical mechanism 
underlying such proposition. In such respects, 
notice that not every radial flow is adapted to the 
dual constraint structures. For instance, one can 
check that, in the case of a pair of consumption 
goods, the flow of the radial vector field 
 

yxxy 






 11
                                                                (3.7) 

 
on the consumption set (0,)(0,) does not map 
simplexes onto simplexes. In fact, being 
 

sysy

sxsx

yx

yx

)0()0(

2

)0()0(

2

1 )0()(

1 )0()(





                                         (3.8) 

 
the explicit representation of the integral curves of 
(3.7) for any initial condition x(0), y(0) and 












,

)0()0(2

1

yx
s , it is quite evident that the 

linearity of the equations of budget constraints is 
not preserved by such drag along, being the points 
of a simplex dragged towards a curved locus.4 
 
Remark 3.2. Proposition 3.1 exploits the dual 
relevance of the condition pq = 1. In fact, as a 
consequence of Property 2.2, such a condition can 
be given both base and tangent interpretation. On 

the one hand, being q and p elements of B and A 

respectively, the condition defines the constraint 
structure subject of Proposition 3.1. On the other 
hand, the condition pq = 1 can be given dual tangent 
significance, namely, it can represent the 

application of Z to a 1-form p(q) on B,5 or it can 

represent the application of  to a 1-form q(p) on 

A. In such respects, we shall be in a position to 

deepen the nature of the fundamental identities of 
duality theory (section 6). 
 
   We thereby conclude the assessment of the 
absolute levels of duality. The stage is set for the 
introduction of the key notion of our approach.  
 
 
4. Expansion vector field 
 
As pointed out in the introduction, the intuition 
underlying our approach posits that, under suitable 
conditions (in first instance, absence of 
nonconvexities), expansion paths on primal space 
can be represented as the flow of a vector field, 
whose parametrization can be employed to gauge 
INE. Such a global representation of pure INE, in 
principle, enables one to represent expansion paths 
as solutions to ODE systems (dynamical systems). 

   A vector field on a manifold M is a section of the 

tangent bundle TM , i.e. a function which identifies 

                                                 
4 The same exercise can be performed with respect to the 

drag along of the arcs of circumference cq

n

k

k 
1

2)(  

which foliate B smoothly. The flow of the vector field (3.3) 

is adapted to such a foliation (maps arcs onto arcs) whereas 

the flow of (3.7) is not. 
5 It is not difficult to convince oneself that B  A is 

diffeomorphic to a proper open subset of the cotangent 

bundle T*B: identify pA with the corresponding 

element of T*qB  according to Property 2.2. 
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a unique tangent vector at each point of M (Figure 

2). Much like the velocity field in the stationary flow 
of a fluid represents the velocities of tiny particles 
dragged by the flow, so the expansion vector field 
on consumption set represents the rate at which 
Marshallian demand changes as consumers choices 
are dragged by increasing optimal expenditure at 
fixed prices. 
 
 

             
Figure 2. A standard qualitative representation of a vector 
field in terms of sample vectors. The length of vectors 
represents the intensity of the field at that point.   

 
 
 
   The vector field  generates such effects, so that 
 
Proposition 4.1. For any consumer satisfying 
Assumption 2.1 the class of expansion paths can be 
represented as the flow of the vector field X  –   = 
 (–), such that X(MRS) = 0. 
 
Proof. Marshallian demand   maps each point of a 

ray on A onto a point of the corresponding 

expansion path on B, so that the parametrization 

(3.2) of the ray induces a parametrization on the 
corresponding expansion path. Then, the push-
forward  maps each vector tangent to the ray onto 
a vector tangent to the expansion path, which 
represents an integral curve of the expansion vector 
field (–) (the minus sign guarantees that the 
vector field is indeed oriented towards expansion), 
along which MRS are constant. By (3.2) and (3.4), 
the coordinate components of X are given by 

Id

dq
I

dI

dq kk

ln
 . 

 
   Proposition 4.1 fixes a global approach to INE, 
parametrized according to (3.4). Despite the 
‘removal’ of income from the set of dual variables, 
we have gained a consistent geometric framework 
for addressing INE. The income variable, in fact, has 
not been removed, it has been employed in a change 

of variables (the projection  :   A) adapted to 

the 0-h symmetry of Marshallian demand and to the 

structure of scale duality. Compare the standard 
parametrization of INE by means of income 
employed in Slutsky decompositions, which identify 
infinitesimal entangled expansion and substitution 
effects which do commute by definition (see also 
Mantovi, 2013). 
   The expansion vector field is a dimensional object 
(quantity). Being the economic relevance of 
dimensionless (and then unit-free) measures well 
established, elasticity concepts are often 
considered; then, let us connect X with income 
elasticity of demand. Evidently, the n functions ln qk, 

with differentials (gradients) k

k

q

dq
, are ‘probes’ of 

the scaling structure of B, in that Z(ln qk) = 1. Then 

one can state 
 
Proposition 4.2. For k = 1,..., n, income elasticity of 
demand of good k is given by 
 

k

k
k

k
kk

k

k

q

X
q

q
Xq

q

dq )(
)(ln)()(ln)(

q
qXX 




   (4.1) 

 

Proof. Given the definition 
k

k

q

I

dI

dq  of income 

elasticity of demand of good k, and the fact that the 
components of the vector field X do coincide with  

Id

dq
I

dI

dq kk

ln
  (Proposition 4.1), the pairing (4.1) 

yields the desired result. 
 
   Recall that income elasticity of demand exceeding 
1 is the condition for a good of being a luxury good, 
which can be stated as Xk(q)  qk. Evidently, not all 
goods can be luxury goods. The constraint 






n

k

k

k
dI

dq
P

1

1  is well known to hold for the marginal 

propensities to consume 
dI

dqk

; correspondingly, the 

components of X do satisfy the equivalent identity 






n

k

k
k Xp

1

1 . Finally, we are in a position to fix a 

well known benchmark property of homothetic 
models. 
 
Proposition 4.3. Given homothetic preferences 
satisfying Assumption 2.1, X = Z. For any homothetic 
consumer the curves (3.4) represent expansion paths 
parametrized by s, the natural logarithm of the scale 
es; the vector field Z generates the expansion flow of 
any homothetic consumer with respect to normalized 
prices. 
 
Proof. It is well established that Marshallian 
demand  is 1-h in income for homothetic models. 
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Then, with respect to normalized prices, 

)(p 
p

 


 






  for any positive . Take  = es and 

obtain the integral curves (3.4), which uniquely 
identify the class of (nonvanishing) vector fields 
proportional to Z. Then, an INE is uniquely 
determined by the scale factor  = es. 
 
   In fact, there is more to Proposition 4.3 than the 
well known fact the expansion paths are rays for 
homothetic consumers. Proposition 4.3 represents 
expansion paths as parametrized according to the 
flow (3.4) of Z, as an explicit breaking of 0-h of 
Marshallian demand for all consumers: all 
homothetic consumers behave the same as far as 
INE are at stake, and all display unit income 
elasticity of demand, a result which we can 
represent by plugging X = Z into (4.1), so as to 
obtain 
 

1)(ln)( 



 k

k
k

k

k

q
q

q
q

dq
Z                                        (4.2) 

 
   Thus, as far as INE are under concern, Z can be 
considered a complete characterization of 
homotheticity, and deviations of the expansion flow 
from the flow of Z can be taken as a measure of 
deviation from homotheticity. Let us employ a pair 
of examples in order to enlighten the nature of the 
expansion vector field. 
 
Example 4.4.  Start with the homothetic Cobb-

Douglas models 




n

k

k
k qaU

1

ln)(q with 




n

k

ka

1

1 , 

for which Marshallian demand reads 
k

kk

p

a
q  , 

being pk normalized prices. Consider INE as 
parametrized by (3.4). Then, the components of X 
are given by 
                                       

k

k
s

s

k

k
s

kk

p

a
e

p

a

ds

d
sq

ds

d
X   00 ||)(                     (4.3) 

 
Then, employing the well known expression of 

inverse demand, one obtains kk qX )(q , so that 

the expansion vector field X does indeed coincide 
with Z (compare the expression for the expansion 
vector field with respect to the choice of a 
numeraire set forth by Mantovi, 2013). 
 
Example 4.5. Consider the model of quasi-
homothetic symmetric preferences discussed by 
Bertoletti (2006), which do satisfy Assumption 2.1. 
For the sake of simplicity, consider the case of two 
goods, and then the direct utility functions 
 

0,),(
1

  


        )(

yx eeyxU              (4.4) 

 
on the consumption set (0,)(0,). Optimal 
consumption is uniquely determined by the FOC 
 

y

x

pUy

pUx

ln)(ln

ln)(ln





Z

Z




                                              (4.5) 

 

being yx yexeU   )(Z , from which we derive 

the cartesian equations 
 

x
p

y
p

yx ln
1


                                                          (4.6) 

 
for expansion paths, which turn out to be straight 
lines with unit angular coefficient. In Figure 3 
sample indifference curves and expansion paths for 
 = 1 are represented. Notice, MRS are bounded 
from above, and indifference curves hit the 
boundary of consumption set. 
 
 

      
Figure 3. Sample indifference curves (green curves) and 
expansion paths (red lines) for the model (4.4) for  = 1. 
The lower dot represents the bundle (0.3,01); the INE 
corresponding to doubled (tripled) income leads to the 
bundle represented by the intermediate (upper) dot.   

 
 
 
   Thus, we expect the expansion vector field to be of 
the form 
 




















yx
yxyx ),(),( X                                        (4.7) 

 
with ),(),( xyyx   smooth, in order to generate 

the expansion paths (4.6). Definitely, employing the 
Jacobian of Marshallian demand 
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yx

x

y
x

yx

yx

y

x
y

yx

pp

p

p
p

ppy

pp

p

p
p

ppx













ln1

),(

ln1

),(

1

1





                                      (4.8) 

 
one can apply Proposition 4.1 and compute 
straightforwardly the components of X; one thereby 
finds that the expansion vector field reads 
 

 





















































yxU

U

yxee

yexe
yx

yx

yx







)(Z

),(X

                       (4.9) 

 
and thus turns out indeed to be symmetric in x and 
y, as well as parallel to the principal diagonal y = x, 
and such that X(MRS) = 0 and X(U) = Z(U). Integral 
curves of (4.9) read 
 

x
p

y
p

x
p

y
p

y
p

x
p

y
p

ss

sxsy

eexsx

ln)()(

ln)1()0()(

1

1










                  (4.10) 

 
consistently with (4.6). We thereby obtain an 
explicit global parametrization of pure INE as 
represented in Figure 3: it is not difficult to employ 
Marshallian demand (4.8) and its inverse 
                                                      

yx

y

yyx

x

x
yexe

e
p

yexe

e
p





















       ,   ,      (4.11) 

 
to convince oneself that for  = 1 the bundle J = 

(0.3,0.1)= 








  2.02.0 3.01.0

1
,

1.03.0

1

ee
  is mapped onto 

Je X 2ln (0.49,0.29) once income is doubled (INE 

parametrized by ln2 as value of the flow parameters 
of  and X), and onto roughly (0.68,0.48) once 
income is tripled. Proposition 4.2 enables one to 
establish that income elasticity of demand for good 

x is 
)( yx

yx

eex

yexe











 (and correspondingly for y), and 

then unitary on the principal diagonal. We refer to 
Pollak (1971) and Bertoletti (2006) for the 
conceptual relevance of the model. 
 
 
5. Symmetries of preferences 
 
Tyson (2013) sets forth a thorough analysis of 
discrete and continuous symmetries of preferences, 
and employs vector fields on primal space as 

generators of 1-parameter groups of symmetry 
transformations preserving the ordering defined by 
the preferences under consideration. Such 
symmetry flows map indifference sets onto 
indifference sets, and then MRS are constant along 
such flows. Being MRS constant along expansion 
paths, one envisions a fundamental connection 
between symmetry vector fields and expansion 
vector fields. Let us fix such a connection. 
 
Proposition 5.1. Given Assumption 2.1, a symmetry 
vector field (in the sense of Tyson, 2013) is parallel to 
the expansion vector field, so that a ‘conversion’ 
factor exists between them. 
 
Proof. A symmetry vector field is such that MRS are 
constant along its flow, so that it is everywhere 
parallel to the expansion vector field. Then, at any 
point, they are proportional one to another: the 
point dependent conversion factor defines a smooth 
function on consumption set. In fact, given a 
symmetry vector field, any affine reparametrization 
thereof is again a symmetry vector field, and the 
relative conversion functions are obtained one from 
another by constant scaling. 
 
The well behavior of preferences in the above 
argument is crucial: continuous symmetries exist 
for nonconvex problems (see Tyson, 2013), which 
cannot be connected simply with expansion paths 
as in the previous proposition, in that expansion 
paths do not ‘span’ the whole of consumption set. 
   Tyson (2013) addresses the properties of PDEs 
associated with continuous symmetries of 
preferences: if Y is a symmetry vector field for a 
definite class of equivalent utility functions, then, 
for 1  i  j  n , the conditions Y(MRSij) = 0 define 
PDEs for a representative utility function. On 
account of Proposition 5.1, such equations can be 
written X(MRSij) = 0. 
  In fact, Proposition 5.1 points at a fundamental 
connection in the theory of differential equations. 
Notice, the expansion vector field defines both the 
ODE system for expansion paths as well as PDEs for 
functions having a define property along such paths 
(for instance, the property of being constant). A 
similar link connects for instance a hamiltonian 
vector field with the PDE characterizing constants 
of the motion, namely, the vanishing of the Poisson 
bracket between the constant of the motion and the 
hamiltonian function (Abraham and Marsden, 
1987). Thus, Proposition 5.1 establishes a deep 
geometrical level for the link between INE and 
symmetries. True, from the economic standpoint, 
the analysis of a few transparent examples pays a 
lot. 
 
Example 5.2. Consider the preferences represented 
by the direct utility function 
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xyyxU ln),(                                                        (5.1) 

 
on the consumption set (0,)(0,), which do 
satisfy Assumption 2.1. The functional form (5.1) 
displays a continuous symmetry, namely,  
translation along y: as represented in Figure 4, 
indifference curves can be obtained one from 
another by vertical translation (see also Silberberg, 
1972). Such a simple symmetry sets an ideal setting 
for discussing the link with expansion effects. 
 
 

   
Figure 4. Sample indifference curves (green curves) and 
expansion paths (red lines) for the model (5.1). 
 
 
 
   Optimal consumption is uniquely determined by 
the FOC 
 

y

x

p
U

p
Ux





)(

1

)(

1

Z

Z
                                                                 (5.2) 

 
being yU 1)(Z , and we derive simply the 

cartesian equations 
 

x
p

y
p

x                                                                             (5.3) 

 
for expansion paths, which turn out to be straight 
lines parallel to the y axis, along which MRS are 
constant. Thus we expect the expansion vector field 

to be of the form 
y

yxf



),( . In fact, the vector field 

y


 is a symmetry vector field for the preferences 

represented by (5.1): being  
 

sysy

xsx





)0()(

)0()(
                                                             (5.4) 

the integral curves of  
y


 for any initial condition 

and   ),0(ys , it is not difficult to convince 

oneself that indifference curves are mapped onto 

indifference curves by the flow of 
y


 . 

   Along the lines employed in example 4.5, one can 
compute the expansion vector field by employing 
Marshallian demand  
 

1
1

),(    ,  ),( 
y

yx
x

y
yx

p
ppy

p

p
ppx                 (5.5) 

 
and its inverse 
 

y
p

yx
p yx







1

1
,

)1(

1
                                            (5.6) 

 
and find 
 

y
yyx



 )1(),(X                                                      (5.7) 

 
with integral curves  
 

1)0()(

)0()(





seysy

xsx
                                                           (5.8) 

 
for s  (–ln y(0), ). Thus, the flow of X does not 
map indifference curves onto indifference curves. 
Still, one can ‘reparametrize’ X and define the vector 

X
y1

1
, which coincides with symmetry vector field 

y


. Notice that X(U) = Z(U), in perfect analogy with 

example 4.5. 
 
Example 5.3. Consider the preferences represented 
by (4.4). It is not difficult to convince oneself that 
for any non vanishing real number  the vector field 



















yx
  is a symmetry vector field for such 

preferences, in that its flow maps indifference 
curves onto indifference curves. On account of (4.9), 
the conversion factor yielding the expansion vector 
field is easily determined. 
 
   The previous examples enlighten the link between 
INE and symmetries: INE do not map indifference 
curves onto indifference curves, since they reflect 
the absolute scaling structure of the theory 
(Proposition 3.1). On the other hand, symmetries 
are not a structural property of the theory; still, 
once a class of equivalent utility functions admits a 
continuous symmetry (in the sense of Tyson), a link 
with INE exists as discussed above. This is a major 
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justification (at least in the author’s view) for 
deepening the differential aspects of duality. 
   Definitely, Tyson (2013) addresses the homothetic 
symmetry among the many others, and does not 
posit a preferred role for such symmetry. With a 
different attitude, we shall deepen the link between 
expansion and symmetries in section 7. 
 
 
6. Demand and conjugation 
 
Expansion paths do not embody all of the traits of a 
consumption problem; for instance, all homothetic 
consumers behave the same as long as INE are at 
stake. Still, the expansion vector field turns out to 
represent a sound probe of the properties of a 
model, as emerges from the following discussion of 
basic model-dependent elements of duality theory, 
namely, Hotelling-Wold (HW) and Antonelli-Roy 
(AR) identities and conjugation. 
 
6.1 Fundamental identities 
Our geometric setup enables us to frame 
consistently the HW and AR identities. Recall, with 
respect to normalized prices, for j = 1,..., n, the HW 
identities 
 

)()()(

1

qq    q
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n
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k
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q

U

q

U
qp












                          (6.1) 

 
provide an explicit representation of inverse 
Marshallian demand, whereas, for k = 1,..., n, the AR 
identities 
                                                              

)()()(
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j j
j

k
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V

p

V
pq




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





                           (6.2) 

 
provide an explicit representation of Marshallian 
demand. By identifying the qk and pj with the 

corresponding components of vectors tangent to B 

and A respectively, one is in a position to state 

 
Proposition 6.1. Given Assumption 2.1, the identities 
(6.1) represent the components of the identity 
 

)())(()( 1
q qZq

 UdU                                           (6.3) 

 

between 1-forms on B. Correspondingly, the identities 

(6.2) represent the components of the identity 
 

)())(()( p pp VdV                                              (6.4) 

 

between 1-forms on A , so that (6.3) is the push-

forward  of (6.4). 
 
Proof. The standard proof (Cornes, 1992) of (6.1) 
and (6.2) fixes the independence of such identities 

from the utility representation. Then, LHSs and 
RHSs of such identities can be consistently 
interpreted as components of 1-forms. For instance, 

dU is an exact 1-form on B, p is a 1-form on B 

(Property 2.2), and Z(U) represents the ‘conversion 
factor’ (function) between the two. Analogous 
arguments hold for AR identities. By definition, the 
LHS of (6.3) is the push-forward  of the LHS of 
(6.4) provided V =  *U. 

 
   The relevance of HW and AR identities is typically 
attributed to their being explicit representations of 
direct and inverse Marshallian demand. In fact, the 
geometric status fixed by Proposition 6.1 provides a 
consistent framework for employing such identities 

between 1-forms on B and A respectively, and 

fixes a basic property of Z(U): being dU and p both 

1-forms on B (Property 2.2), Z(U) is the ‘conversion 

factor’ between the two. Notice that both dU and 
Z(U) depend of the utility representation, whereas 
their ratio does not. Furthermore, being U 1-h, so 
that Z(U) = 1, one has dU = p, which represents the 
scale symmetry of the FOC representing optimal 
homothetic consumption. Perfectly symmetric 
arguments hold for dV and q. 
   As a glance into the effectiveness of our geometric 
description, consider the following ansatz about the 
form of the geometric HW identity. Forget about 
(6.1) and ask what the conversion factor (q) 
between the 1-forms dU and p should be. Definitely, 
in the light of our remarks on tangent duality, the 
equilibrium condition pq = 1 implies that applying Z 
to both sides of dU(q) = (q)p we obtain Z(U) = . A 
corresponding dual argument holds. 
   The expansion vector field can be applied to both 
sides of (6.3) and yield (disregarding the 
dependence on q for the sake of simplicity of the 
formula) 
 

)()()()( 1
X ZXX

 UUdU                                (6.5) 

 
Thus, the pairing between X(q) and  –1(q) equals 
the ratio between X(U) and Z(U). Consistency of 

(6.5) with the constraint 




n

k

k
k Xp

1

1 for the 

marginal propensities to consume implies 
 
Proposition 6.2. Given Assumption 2.1, for any 
direct utility function U, we have X(U) = Z(U), so that 

1)(1 
X . Then, the vector field X–Z is tangent to 

indifference sets. 
 
Recall Remark 3.2 and notice that Proposition 6.2 
enables us to appreciate the tangent significance of 
expressions of the form pq. Despite the different (in 
general) directions of X and Z, their application to 
the utility function yields the same result, as a 
consequence of the properties of optimization 
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embodied by X, and of the parametrization of X 
induced by . Notice that for homothetic models 
(6.5) reduces to Z(U) = Z(U)  –1(Z), i.e. 1= –1(Z). 
For instance, employing the inverse demand 

k
k

k
q

a
p   of Cobb-Douglas models we obtain 

1)()()(

11

11  



n

k

k

k

k
n

k

k
k q

q

a
X  qq X  . In addition, 

notice that we have checked explicitly that the 
expansion vector fields (4.9) and (5.7) are such that 
X(U) = Z(U). 
 
6.2 Conjugation and expansion 
The Shephard duality between distance and 
expenditure functions is typically expounded as the 
symmetry linking the optimization problems which 

define such functions: much like D(q,u) coincides 

with the minimum of pq for unit expenditure, so 

E(p,u) coincides with the minimum of pq for unit 

distance (for instance, Cornes, 1992, pp. 76-77). Let 

us envision D and E as parametrization of the 

scaling flows, and thereby pave the way for a 
transparent use the expansion vector field of in the 
characterization of departure from conjugation as 
homothetic benchmark. 
   On account of Assumption 2.1, the indifference 

sets on A (B) define a foliation of A (B). We are 

thereby guaranteed that any element of A (B) 

belongs to an element of the indifference foliation of 

A (B). Then, the vector field Z can be employed for 

the definition of D(q,u): the distance between the 

bundle q and the utility level u can be defined in 
terms of the parameter interval which connects q 
with the point along the curve (3.4) belonging to the 
indifference set U(q) = u, i.e. 
 

  u
u

UeU u 









),(

),(ln

q

q
   q  

Zq

D
D                        (6.6) 

  
(see for instance Gorman, 1976; Deaton, 1979) 
irrespective of the utility representation. Let us 

write q
Zq ),(ln ue D  a shorthand for (3.4) with 

s(q,u)=–lnD(q,u). 1-h of D in q can be written 

  ),(),( uu qqZ DD  . Corresponding to (6.6), being 

V(p) indirect utility as function of normalized prices 
(the pull-back of U via Marshallian demand), the 

expenditure function E(p,u)6 is such that 

  u
u
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
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



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                         (6.7) 

 

                                                 
6 Being the expenditure function 1-h in prices, the identity 

E(P,u) = I E(p,u) (Cornes, 1992, p. 94) connects the 

representation E(P,u) in terms of prices with the 

representation E(p,u) in terms of normalized prices . 

with   ),(),( uu pp EE  . Thus, we succeed in 

defining distance and expenditure functions as 
global logarithmic parametrizations of the flows of 

Z and , given the indifference sets A|u and B|u as 

the loci of initial conditions transverse to the flows 
(i.e. each integral curve intersects the locus at a 
single point). For any u belonging to the range K = 

U(B) of U (which, evidently, coincides with the 

range of its pull-back V), E is a function on A and D 

is a function on B. We are in a position to introduce 

the conjugation property defined by Gorman 
(1976). 
   Recall, the bundle q and the price vector P are 

conjugate at the utility level u if D(q,u)E(P,u) = Pq. 

Then, being normalized prices the dual variables, 

qB and pA are u-conjugate if D(q,u)E(p,u) = 

pq. Evidently, if D(q,u) = 1, then q and  –1(q) are u-

conjugate. In general, the inequality (Gorman, 1976; 
Deaton, 1979; Cornes, 1992) 
 

pqpq ),(),( uu ED                                                    (6.8) 

 
embodies the convexity of the economic problem. 
Such an inequality is well known to reduce to 
equality for homothetic problem, in the sense of 
 
Property 6.3. Given homothetic preferences 

satisfying Assumption 2.1, if qB and pA are 

conjugate at uK, they are conjugate at any uK. 
 
   Recall that it is trivial to check that p and (p) are 
conjugate at any u for homothetic models, and that 
in order to prove the above property one can rely 
on the factorization of distance ad expenditure 
functions. In fact, the conjugation relation is a 
binary symmetric relation between rays on dual 
spaces, and it is no wonder that such a relation 
displays the benchmark homothetic limit fixed by 
Property 6.3. 
 
Example 6.4. Consider a(0,1) and the Cobb-

Douglas utility function  
)1(),( aa yxyxU  , whose 

associated expenditure function is well known to 

read 
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D . We thereby 

check that for the homothetic Cobb-Douglas models 

the identity D(q,u)E( –1(q),u) = 1 holds true for 

any u(0, ). 

   Then, consider the case a = 0.5, p = (1,0.25)A 
and q = (1,4)B, which differs from  (1,0.25) = 
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(0.5,2), and is such that pq = 2. Being D(q,1) = 2 

and E(p,1) =1, q and p are conjugate at u=1. Employ 

the expression of Cobb-Douglas distance and 
expenditure functions in order to check that q and p 
are conjugate at any u(0, ). 
 
   The departure from conjugation defines quite a 
natural setting for envisioning the nature of the 
expansion vector field X: rays in the space of 
normalized prices can be taken as parametrization 
of INE, so that it is natural to expect X to provide a 
differential representation of the departure from 
Property 6.3. 
   Let us specialize inequality (6.8) to equilibrium, 
i.e. 
 

)(),()),(( pppp  uu ED                                              (6.9) 

 
   Standard arguments supporting (6.8), and then 

(6.9), exploit the convexity of D and E. We are in a 

position to employ the properties of X in order to 
envision the inequality 
 

   ),(),(),( uuu qZqqX DDD                            (6.10) 

 
as a differential counterpart to (6.9). 
   As represented in Figure 5, one can take q0 as 
initial condition for both the flows of Z and X. 
Consider the same value s = ln2 for the parameter 

flows, and then 0
2ln

02 q q
Ze and  0

2ln
q q

Xe .  

 
 

      
Figure 5. A qualitative representation of the mechanism 
underlying (6.10). The bundle 2q0 is given by the flow of Z 
with initial condition q0 and parameter value ln2. The 
bundle q is given by the flow of X with initial condition q0 
and parameter value ln2. The curvature of the 
indifference curve through q0 is the source of the 
inequality 2),2(),( 0  uu qq DD . 

  
 
Figure 5 displays the reason for strict (quasi-) 
convexity of preferences to imply 
 

2),2(),( 0  uu qq DD                                               (6.11) 

 
whose differential correspondent is (6.10), since the 
inequality in (6.11) holds for any value s of the 
parameter flows. 
   We thereby envision the departure of the flows of 
X and Z as both a measure of departure from 
homotheticity as well as a measure of departure 

from conjugation. Then, D(q,u) can be considered 

as an ‘integral’ of  ),( uqX D , and one recovers the 

LHS of (6.9) as the ‘infinite sum’ of ‘infinitesimal’ 

contributions of the form   )),(( )),(( ususds pqX ED at 

fixed u. 
 
 
7. Homothetic models 
 
Proposition 4.3 and Property 6.3 above represent 
well known aspects of homothetic models. True, the 
preferred status of homothetic models has long 
been recognized. For instance, Gorman (1976) 
points out “how very much easier it is to move back 
and forward between primal and dual 
representatives if the original utility function is 
homothetic”. In fact, according to Chambers and 
Mitchell (2001), “Homotheticity may be the most 
common functional restriction employed in 
economics.” The factorization of distance and 
expenditure functions is typically taken as the most 
significant distinguishing feature of homothetic 
models. The benchmark role of homotheticity in 
welfare analysis is the subject of Chipman and 
Moore (1980). More recently, Mantovi (2013) sets 
forth a characterization of homothetic models in 
terms of the commutation of expansion and 
substitution effects represented by means of flows 
on consumption set. Along similar lines, building on 
Proposition 4.3, let us employ the commutation 
properties of scaling and expansion vector fields in 
order to deepen the benchmark nature of 
homothetic preferences. 
   As is well known, the Lie bracket [A,B] of the 
vector fields A, B is a local measure of the 
commutativity of the associated flows. The 
vanishing of [A,B] on an open set O of the manifold 
implies that within O the flows of A and B do 
commute, i.e. starting from any point of O one can 
follow the flow of A for a parameter interval a and 
then the flow of B for a parameter value b and 
obtain the same final point which is obtained once 
the flows are followed in the reversed order (see 
Spivak, 1999). Evidently, coordinate vector fields do 
commute, since one can follow coordinate lines in 
any desired order and reach the point uniquely 
determined by a specified coordinate n-tuple.7 

                                                 
7 More generally, Frobenius theory establishes the 

integrability of involutive distributions. 
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   To the author’s knowledge, Lie brackets do not as 
yet represent a standard method in microeconomic 
analysis. Still, Bogetoft et al. (2006) set forth a 
reversed decomposition of technical and allocative 
efficiency which can be traced to the mechanism 
above, once we recognize that technical efficiency 
can be measured by the flow of the scaling vector 
field Z, and that allocative efficiency can be 
measured by the flow of a substitution vector field 
as in Mantovi (2013). Bogetoft et al. (2006), among 
other things, establish that, for a single output 
producer, standard and reversed decompositions of 
overall technical efficiency do coincide if and only if 
the production function is homothetic. Thus, it is 
natural to argue about the relevance of a systematic 
framework for investigating the commutativity of 
effects for the consumer as well, for which the 
disparity between willingness to pay and 
willingness to accept (see for instance Weber, 2010, 
and references therein) may represent a natural 
playground. 
   The following property is meant to fix a geometric 
approach for such a vision. 
 

Property 7.1. The Lie bracket (vector field on B)  

 

                                          ],[ XZ                                    (7.1) 

 
provides a consistent measure of departure of 
preferences from homotheticity in that (7.1) vanishes 
if and only if preferences are homothetic. The 
coordinate representation of (7.1) reads 
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Proof.  On account of Proposition 4.3, (7.1) vanishes 
if preferences are homothetic: being the Lie bracket 
skew-symmetric, [Z,Z] vanishes. If preferences are 
non homothetic, the vector field (7.1) accounts for 
the deviation of the flows of Z and X as a basic 
principle in the theory of dynamical systems. In fact, 
it has been long established on economic grounds 
that expansion paths are not rays for non 
homothetic models. One can check (7.2) directly by 
means of the standard formula for the components 
of the Lie bracket (Spivak, 1999, p. 153); the 
interpretation of (7.2) is enlightening: the 
coordinate components of [Z,X] represent the 
difference between application of Z to the 
components of X and the components of X 
themselves. 
 
Example 7.2. Let us employ the preferences (4.4) in 
order to enlighten the economic content of the 
somewhat technical Property 7.1. We expect the 
computation of (7.1) with X given by (4.9) to result 

in a nonvanishing vector field, being the model not 
homothetic. In fact, (7.1) results in 
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which is a vector field parallel to expansion vector 
field (4.9). Then a scale transformation (generated 
by Z) followed a INE (generated by X) is not 
equivalent the reversed sequence of effects, and the 
‘difference’ is parallel to X: in this model the 
differential measure (7.1) can be integrated along 
the flow of X and thereby yield a finite measure 
(compare Mantovi, 2013, Appendix 2), 
corresponding to an INE.  
 
One can check that the effects generated by (7.3) 
are negligible across the whole consumption set. 
Non negligible effects are obtained in 
 
Example 7.3. For the expansion vector field (5.7), 
the Lie bracket (7.1) results in 
 

y


],[ XZ                                                                    (7.4) 

 
and then parallel to the expansion vector field as in 

the previous example. Recall, we have seen that 
y


 

is a symmetry vector field for the preferences (5.1), 
so that in this model the noncommutativity of scale 
effects and expansion effects is generated by a 
symmetry vector field. 
 
 
 

   
Figure 6. The bundle (2,2) and its images under the scale 
and expansion effects and their composition in both 
orders discussed in the main text.  
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   Figure 6 represents an instance of such a 
noncommutativity. Start with the bundle (2,2). 
Double the bundle (scale effect) and obtain (4,4), 
then apply the INE corresponding to doubling 
income (expansion effect) and obtain (4,7). Then, 
compose the same effects in reversed order and 
obtain the final bundle (4.6). Thus, the ‘difference’ 
between the bundles (4,7) and (4,6) is a finite 
correspondent of the differential measure (7.4). 
 

   The Lie bracket (7.1) is a vector field on B which 

can be computed on any scalar function on B; true, 

in order to enlighten the significance of (7.1), one 
has apply it to significant functions, in first instance  
MRS. Definitely, given 1  i  j  n, one has 
 

 ))MRS((

))MRS(())MRS(()MRS](,[

ij

ijijij
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    (7.5) 

 
since MRS are constant along the integral curves of 
X. We thus obtain the derivative along the 
expansion flow of Z applied to MRS. On account of 
our discussion in section 5, formula (7.5) can be 
connected with the analysis of symmetries: 
provided a continuous symmetry of preferences 
exists, the symmetry vector field can be 
transformed into the expansion vector field by 
means of a conversion factor, and then the Lie 
bracket (7.5) expressed in terms of the symmetry 
vector field. 
   As pointed out in section 5, Tyson (2013) does not 
posit a preferred role for the homothetic symmetry; 
true, the Lie bracket (7.5) embodies the benchmark 
role of the homothetic symmetry, which is a 
symmetry of the structure itself of the theory (in the 
sense of Proposition 3.1) before than a symmetry of 
definite preferences. 
   Then one can employ the arguments in subsection 
6.2 in order to argue about the significance of the 
application of the commutator [Z,X] to the distance 
function, such that 
 

)())(()](,[ DDD XXZXZ                              (7.6) 

 
Notice the ‘similarity’ between (7.2) and the RHS of 
(7.6), which holds for any 1-h function. 
   True, MRS and distance functions embody model 
dependent features, and therefore the significance 
of (7.5) and (7.6) can be naturally considered as 
pertaining to the model-dependent level of the 
theory. On the other hand, one can compute the 
vector field (7.1) on functions which do not contain 
information about a specific problem, and still 
obtain valuable relations, since the vector field X 
embodies the solution of the consumption problem 
as far as INE are at stake. For instance, one can 
consider functions which probe the scaling 
structure of the theory: true, as already pointed out, 
the n functions ln qk are probes of the scaling 

structure of primal space, in that Z(ln qk) = 1, so that 
Y(Z(ln qk)) = 0 for any vector field Y. Thus, 
computing (7.1) on such functions we obtain 
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i.e. we obtain Z applied to income elasticity of 
demand (Proposition 4.2), which, evidently, 
vanishes for homothetic preferences. 

   Then, one can apply (7.1) to the 1-form )(1
q

  

guest of Proposition 6.1, whose coordinate 
components are the inverse Marshallian demand of 
the consumption goods. On account of Proposition 

6.2, the pairing ]),([1
XZ

  vanishes. Then, the line 

integral of 1  vanishes once computed on 

sequences of portions of integral lines of Z and X 
with corresponding parametrizations. On account of 
Propositions 6.1 and 6.2, such a result is equivalent 
to 
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   The non vanishing measures (7.5)-(7.8) represent 
deviation form homotheticity, yet, they do not tell 
‘how much’ deviation. True, once a flexible form for 
utility functions is employed which reduces to 
homotheticity in a definite limit, one can define an 
‘extent’ of deviation from homotheticity. 
   As the reader should expect, we can pull-back 
Property 7.1 onto its dual correspondent. 
 

Proposition 7.4. The Lie bracket (vector field on A) 

  

                                         ],[ Z
                                  (7.9) 

 
provides a consistent measure of departure from 
homotheticity in that (7.9) vanishes if and only if 
preferences are homothetic. The coordinate 
representation of (7.9) reads 
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Proof.  On account of Proposition 3 in Spivak (1999, 
p. 190), (7.9) is the pull-back  * of (7.1). Employ 
Proposition 4.3 in order to check that (7.9) vanishes 
if and only if the problem is homothetic. Then, pull-
back (7.2) and obtain (7.10). 
 
On account of Proposition 7.4, dual formulas to 
(7.5)-(7.8) establish a perfectly symmetric dual 
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framework for employing Lie brackets in the 
characterization of departure from homotheticity. 
 
 
8. Perspectives 
 
In the last decades the theory of duality has made 
its way to the foundations of microeconomics, on 
account of both the fundamental results thereby 
established, and of the recognition of the pregnancy 
of ‘thinking dual’. For instance, according to Cornes 
(1992), duality theory conveys “much more direct 
insight” into problems, and favours “more creative 
use” of optimization techniques. In such respects, 
we have been arguing about the effectiveness of a 
differential geometric approach to duality shaped 
by the fundamental role of the group of homotheties 
on both dual spaces. In connection with a natural 
hypothesis of well behavior, we have been in a 
position to deepen the differential level of the 
theory concerning preference symmetries, 
fundamental identities and conjugation in 
connection with the benchmark nature of 
homothetic models. 
   The limited size of the paper has constrained our 
analysis to a few elements of duality theory. Still, in 
the author’s vision, the approach can be extended to 
the various elements of the theory (for instance 
Slutsky equations), as well as translated to 
production analysis along well established lines. In 
fact, duality is often addressed in terms of 
production problems (for instance, Diewert, 1982; 
Chambers, 1988). 
   Notice, we have not been exploiting the freedom of 
choosing coordinates at will on primal and dual 
spaces, which is not a key problem in duality theory 
on account of the economic significance of standard 
coordinates, namely quantities (of consumption 
goods or production inputs) and prices. Still, even at 
fixed coordinates, the geometric characterization of 
basic principles has long entered the 
microeconomic inquiry (see for instance, Debreu, 
1976; Smale, 1982), in first instance for the purpose 
of global analysis, which enables one to set free 
from the straitjacket of comparative statics.8 In fact, 
evidently, coordinate changes are required for 
dealing with characteristics and hedonic prices. 
   A number of lines of progress for our approach 
can be envisioned. In section 7 we have been 
deepening the technical aspects underlying the 
benchmark nature of homothetic models. A natural 
line of progress pertains to the transposition of the 
analysis in section 7 to the problem of productive 
efficiency. In such respects, notice that Examples 7.2 
and 7.3 above can be interpreted in terms of the 
commutativity of measures of technical efficiency 
and output expansion. The noncommutativty of 

                                                 
8 According to Baumol (1973), “We have become used to 
comparative statics arguments whose results are 
remarkable for their banality”. 

efficiency measures discussed by Bogetoft et al. 
(2006) represents a landmark in such respects. See 
the discussion on the different interpretations of 
standard and reversed efficiency measures; among 
other things, the Authors notice that “it may be 
advantageous to choose a particular path to obtain 
overall efficiency if the process has to be carried out 
sequentially over a period of time” (ivi, p. 460). 
   Our approach can be employed in the study of 
separability. For instance, Tyson (2013) employs 
symmetry vector fields in order to address 
univariate and multivariate separability. Our 
geometric framework may extend the dual reach of 
such an approach in both consumption and 
production settings. Notice, the dual perspective on 
separability is well known to provide relevant 
results (see for instance Blackorby et al., 1978). 
   The duality properties of benefit functions 
(Luenberger, 1992) may provide a natural 
playground for our approach. Recall, benefit 
functions generalize distance functions, and as such 
display a duality with expenditure functions, once 
the reference bundle is property taken into account. 
Our geometric framework is flexible enough to deal 
with such an approach, and address for instance 
translation homotheticity (Chambers and Färe, 
1998). 
   Mantovi (2013) employs the Lie bracket in order 
to measure the commutativity of expansion and 
substitution effects, thereby deepening the 
benchmark nature of homothetic models, and in fact 
the potentialities inherent to the representation of 
expansion and substitution effects in terms of flows, 
i.e. dynamical systems. Our geometric approach to 
duality is inherently adapted to such a framework, 
and may contribute to enhance its potentiality. 
   Finally, in the author’s vision, a most promising 
avenue of progress for our approach is represented 
by a hamiltonian formulation of duality. As already 

pointed out, B  A can be considered an open 

subset of the cotangent bundle T*B, upon which to 

setup hamiltonian dynamics. It is quite natural then 
to conjecture the effectiveness of addressing 
general models and effects on symplectic grounds, 
employing Poisson brackets as a realization of Lie 
brackets we have been discussing, so as to exploit 
the power of canonical transformations. 
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